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Background: Extra-oral traction appliances were introduced more than a century ago and continue to be used to produce 
orthopaedic and/or dental changes in the maxilla. While force systems produced by asymmetric outer bows have been studied 
extensively, the force systems produced by asymmetric inner bows have been overlooked.
Aim: To analyse the forces acting on the maxillary first molars: when the size of one bayonet bend is increased; when the point 
of application of the distalising force on the inner bow is moved to one side; when one molar is displaced palatally.   
Methods: Four FEM models of cervical headgear attached to maxillary first molars were designed in SolidWorks 2010 and 
transferred to an ANSYS Workbench Ver. 12.1. Model 1, each molar was 23 mm from the midpalatal line and the inner bow 
was symmetrical; Model 2: the left molar was displaced 4 mm towards the midpalatal line and the inner bow was symmetrical; 
Model 3: the molars were equidistant (23 mm) from the midpalatal line, but the left molar was engaged by a 2 mm larger 
bayonet bend; Model 4: the molars were equidistant (23 mm) from the midpalatal line but the join between the inner and 
outer bows was displaced 2 mm towards the left molar. In all FEM models, a 2N force was applied to the inner bow at the 
join between inner and outer bows and the energy transmitted to the teeth and the von Mises’ stresses on the molar PDLs were 
assessed.
Results: There were marked differences in the strain energy on the teeth and the von Mises stresses on their PDLs. A 14 to 20 
per cent increase in energy and force was produced on the tooth closer to the symmetric plane of the headgear. In addition, the 
increase in energy produced a 30 to 62 per cent increase in the von Mises stresses within the PDLs.
Conclusion: Small asymmetries in molar position, the size of a bayonet bend and the point of application of a force on an inner 
bow resulted in asymmetrical forces on the molars. These forces were higher on the molar closer to the symmetric plane of the 
headgear. 
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Introduction

Headgear was introduced to the dental profession 
by Norman William Kingsley in the 19th Century.1 
In the early 1900s, Angle replaced headgear with 
intermaxillary mechanics which were considered to 
produce similar effects. Subsequently, Oppenheim 
promoted the use of headgear and described its 
mechanical principles.2,3 Published reports have 
provided advice on the selection and use of the 
appliance while Oppenheim’s original description 

has been expanded to detail how the inclination 
and symmetry of the outer bows may affect tooth 
movement.4-14 In spite of the wealth of information 
on the effects of different lengths and positions 
(angulations) of the outer bow on tooth movement, 
the effect of asymmetries in the inner bow on the 
molars has escaped attention.

The finite element method (FEM) was introduced less 
than a century ago and has been adopted by the biologic 
sciences as a numerical means of finding answers to 
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Figure 1. (a) Model 1, the positions of the molars and the headgear 
are symmetrical. (b) Model 2, the maxillary left molar in displaced 4 
mm towards the palatal midline. (c) Model 3, the left molar is engaged 
by a 2 mm larger bayonet bend, shifting the symmetric plane of the 
headgear to left, thus reducing the left molar distance to this plane. (d) 
Model 4, the join between the inner and outer bows has been moved 
2 mm to the left. 
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(c)
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difficult questions. It consists of a computer model of 
a material or design that is stressed and analysed for 
specific results. The method involves the solving of 
partial differential equations by the use of a system of 
approximations which have been proven efficient in 
resolving the complex issues of structural analysis.15-20 

It was considered that FEM would be useful in 
determining the force systems between the inner 
bow of a cervical headgear and the first molars when 
asymmetries were introduced into either the size of 
one bayonet bend, the point of application of the 
distalising force, or the position of a molar. In the 
FEM models under examination, the inner bows were 
passive before applying a force from a hypothetical 
neck strap.

Materials and method

Four FEM models were designed. In Model 1, which 
served as a control, the maxillary first molars were 
equidistant (23 mm) from the midpalatal line and 
the inner bow was passive and symmetrical, while 
in Model 2, the left molar was 4 mm closer to the 
midpalatal line (19 mm) than the right molar. In 
Model 3, the first molars were equidistant (23 mm) 
from the midpalatal line, but the left bayonet bend was 
2 mm larger than the right bayonet bend, simulating 
an inner bow bypassing a prominent canine. In the 
final model (Model 4), the molars were, again, 23 
mm from the midpalatal line, but the join between 
the inner and outer bows was displaced 2 mm towards 
the left side (Figure 1).

The FEM models incorporated both maxillary first 
molars, their PDLs, a slice of the maxillae supporting 
the first molars, the tubes attached to the buccal 
surfaces of the molars and the inner bow of the 
headgear. It was assumed that the surface areas of the 
PDLs in each FEM model were equal throughout 
the experiment. The models were designed in 
SolidWorks 2010 (SolidWorks, Concord, MA, USA) 
and transferred to an ANSYS Workbench Ver. 12.1 
(ANSYS Inc., Canonsburg, PA, USA) for solution. 
The headgear was considered to be made of 1.14 
mm diameter stainless steel wire. The models were 
meshed in the ANSYS Workbench (Figure 2). Model 
1 contained 49507 nodes and 25253 elements, Model 
2 had 57172 nodes and 26241 elements, Model 3 had 
53581 nodes and 24170 elements and Model 4 had 
55825 nodes and 24898 elements.
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Solving for Fnormal  we have: 
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<1, the solution gives  Fnormal   <  Fnear

From this equation, it is evident that the near side 
(displaced) molar is subjected to a larger component 
of the applied force than the normal side molar. Of the 
four elements in the above equation, two are unknown 
(Fnormal  and Fnear  ) and two are known (R and R-∆) 
which makes the equation unsolvable. Therefore, 
to determine the forces present, the equation was 
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Adding the denominator components produces:
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Assuming a 200 g force for headgear and (2R-∆) =  
(2 x 23)-4 = 42: 
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Therefore:  
F(normal) = F(total)  – 109.523

=90.476 g

The increasing nature of this force is shown in  
Figure 3.

Model 3

The following formula was used to calculate the 
effect when one bayonet bend was larger than the 
contralateral bayonet bend. Delta ‘∆’ is the distance 
between the symmetric axis of the inner/outer bow 
and the midsagittal plane: 

(R+∆) ×F(normal) 
= (R-∆)×F(near)

Where: 

R + ∆ = The distance from the molar engaged by the 
normal bayonet bend to the symmetric axis of the 
inner/outer bow. Note, R equals 23 mm (half palatal Figure 2. The meshed model.

The anterior and posterior surfaces of each model 
were fixed. The inner/outer bow connection was 
loaded with a 2N force at 20 degrees to the horizontal 
plane. The mechanical properties of the materials 
used are provided in Table I. The energy exerted on 
the molars and the von Mises stresses produced in the 
PDLs of molars were assessed by a defining probe (a 
post-processing tool in the ANSYS Workbench).

Analyses of the force systems

Model 1

In this control model, the molars were the same 
distance (23 mm) from the symmetric plane of the 
headgear and the midline of the maxillae. The force 
applied by the headgear was divided by two and the 
result applied to each molar.

Model 2

The forces on the right and left molars are described 
by the following equations. Considering delta (∆) 
the difference, in millimetres, in the bucco-palatal 
positions of the molars relative to the midpalatal 
line (and the symmetric plane of the inner bow, 
represented by the join between the inner and outer 
bows), the equilibrium equation used to explain the 
force applied to each molar is: 

R× Fnormal = (R–∆)× Fnear 

Where:

R = The distance from the molar in the normal 
position to the symmetric plane of the headgear. This 
was assumed to be 23 mm.

Fnormal  = The force applied to the normal side molar

Fnear = The force applied to the displaced molar. 
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width) plus 2 mm (shift of the headgear symmetric 
plane to the left side) equals 25 mm.

R - ∆ = The distance from the molar engaged by the 
large bayonet bend (near side) to the symmetric axis 
of the inner/outer bow.

F(normal)  
= The force applied to the normal-side molar.  

F(near) 
= The force applied to the molar with the large 

bayonet bend.

Therefore:
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From this equation, it is evident that the near-side 
molar is subjected to a larger component of the 
applied force than the normal-side molar.

 

The equilibrium equation relative to the molar with  
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Model 4

The analysis is the same as Model 3.

Results

The findings are provided in Table II.

Energy

In Model 1 (the control model), the calculated energy 
was 393 nJ for both molars. In Model 2, the energy 
on the normal molar was 401 nJ and 460 nJ on the 
displaced molar, which represents a 14.7 per cent 
increase in energy on the displaced molar. In Model 3, 
a higher energy value occurred on the molar engaged 
by the larger bayonet bend (438 nJ) compared with 
the molar engaged by the normal-size bayonet bend 
(381 nJ). The energy difference in this model was 14.9 
per cent more on the molar with the larger bayonet 
bend. In Model 4, the energy on the molar closer to 
join between the inner - outer bows was 544 nJ, and 
on the contralateral molar it was 377 nJ, representing 
a 44.2 per cent increase in energy (Figure 4).

von Mises stresses

As it was assumed that the surface areas of the PDL 
in each model remained equal throughout each 
experiment, an increase in the von Mises stresses can 
be interpreted as an increase in the applied force. The 
stress value for Model 1 was equal to 0.95 MPa.

The differences in the stress (i.e. force/area) findings 
showed that a higher force was applied to the displaced 

Figure 3. Force findings in the near (displaced) and normal molars.

Young’s modulus 
(MPa)

Poisson’s ratio

Tooth 20 300 0.26

PDL   0.667 0.49

Spongy bone 13 400 0.38

Cortical bone 34 000 0.26

Stainless steel 200 000 0.30

Table I. Mechanical properties of the materials used in this study.
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molar (2.016 MPa) compared with the molar in a 
normal bucco-palatal position (1.439 MPa) in Model 
2. Furthermore, the molar on the side with the larger 
bayonet bend experienced a higher stress (1.392 MPa) 
compared with the molar attached to the normal 
bayonet bend (1.067 MPa). In Model 4 (shift of the 
inner/outer bow attachment), the PDL on the side 
closer to the inner – outer bow join was subjected to 
2.32 MPa whereas the PDL on the contralateral molar 
experienced 1.432 MPa, which equaled 62 per cent 
more stress than that received by a molar in Model 1 
(Figure 5).

Discussion

The present investigation aimed to determine the 
force systems generated between the inner bow of a 
cervical headgear and the first molars when either the 
bucco-palatal position of a molar, the size of a bayonet 
bend or the position of the join between the inner and 
outer bows was varied. Due to the limited space and 
the difficulty of clinical access in the maxillary first 
molar area, the FEM is the only method capable of 
analysing the force systems delivered by variations in 
the design of the inner bow and/or the position of a 
molar. The method assessed the likely generated force 
systems numerically and conservatively. 

In the first FEM model, which was used as a control, 
the inner headgear bow and the position of the molars 
relative to the median axis of the inner bow were 
symmetrical. In the second model, a unilateral first 
molar crossbite was simulated by displacing one molar 
4 mm towards the maxillary midline. In the third 
model, another common clinical problem found in 
headgear patients was simulated, that being a labially 
placed canine with both maxillary first molars in their 
normal bucco-palatal positions. In the final FEM 

model, the join between the inner and outer bows 
was displaced to one side. In the three FEM models 
with asymmetries the inner bows were passive and 
did not deliver any force to the teeth until connected 
to a hypothetical neck strap. The models revealed 
that more energy and force were generated on the 
side closer to the asymmetries. These findings are of 
clinical significance because small asymmetries may 
be undetected and, as has been shown, can result in 
marked changes in the delivered force systems, which 
could affect one molar in an unwelcome manner.

In the second model (4 mm palatal displacement 
of one molar), the 15 per cent energy difference in 
the forces acting on the molars would be capable of 
moving the displaced molar further distally than the 
molar on the ‘normal’ side. Similarly, in the third FEM 
model with unequal bayonet bends, the symmetric 
plane of the headgear shifted towards the side with the 
larger bayonet bend and produced a similar effect as 
Model 2 (that is, a 15 per cent difference in energy on 
the molars). It was found that the largest side-to-side 
difference in force generation (20 per cent) was found 
in the fourth FEM model. 

The literature lacks information on the effects of 
an asymmetry in a headgear inner bow. The present 
study suggests that, over time, unequal forces from 
an asymmetric inner bow could create an iatrogenic 
malocclusion. To avoid unwanted effects, it is suggested 
that clinicians use a symmetroscope to assess the 
symmetry of an upper arch before starting headgear 
treatment, and to reassess the form of the inner bow 
at adjustment visits. Clinicians may prefer to take 
photocopies of the headgear throughout treatment 
as these can be superimposed and differences in form 
easily detected. 

The present findings may also be applied to a buccally 

Model 1 Model 2 Model 3 Model 4

Normal 
molar

Normal 
molar

Normal
molar

Near
molar

Normal
molar

Near
molar

Normal
molar

Near
molar

Energy (Tooth, nJ) 393 395 401 460 381 438 377 455

Von Mises Stress 
PDL (MPa) 0.946 0.952 1.439 2.016 1.067 1.392 1.432 2.32

Model 1, control, both molars 23 mm from the midpalatal line, inner bow symmetrical; Model 2, left molar displaced 4 mm towards the midpalatal line, 
inner bow symmetrical; Model 3, both molars 23 mm from the midpalatal line, left molar engaged by 2 mm larger bayonet bend; Model 4, both molars 
23 mm from the midpalatal line, inner - outer bow join displaced 2 mm towards the left molar.

Table II. Numeric findings in two stages of the study.
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placed maxillary first molar. In this case, the molar 
will receive less force than the molar in a normal 
position. To avoid unwanted side effects, it may be 
advantageous to correct a first molar in crossbite 
before starting headgear treatment. Unwanted side 
effects can be negated by ensuring that the inner bow 
is symmetric and that the bayonet bends are the same 
size. 

Symmetry in the inner bow also includes the join 
between inner and outer bows. In the fourth FEM 

model, it was found that if the join between the inner 
and outer bows was offset to one side, the molar on 
the side closer to the join was subjected to a markedly 
higher force. This finding is particularly important 
because this simple modification could be used to 
correct the mesio-distal position of a molar without 
the anchorage loss that accompanies other intra-oral 
appliances. In Model 4, the normal molar – near 
molar difference in von Mises stress was the highest 
found in the FEM models at 0.89 MPa. As the inner 
– outer bow join was only offset 2 mm, it could be 
postulated that a larger offset would have a greater 
effect on the near side molar.

The distance between the molars and the symmetric 
plane of the inner headgear bow directly affected 
the force delivered to the molars. In Model 2, the 
symmetric plane of the headgear coincided with the 
median sagittal plane of the hypothetical patient 
(represented by the slice through the maxillae), 
but the molars were at different distances from the 
median sagittal plane (as seen in a unilateral posterior 
crossbite). The circumstances were different in Models 
3 and 4 in which the symmetric plane of the headgear 
was closer to one molar (near side), and the molars 
were not displaced palatally.

A small, but important, difference existed in the two 
asymmetric inner bow groups. When a molar was 
displaced towards the palatal midline to simulate a 
unilateral crossbite, a small millimetre decrease (delta) 
occurred in the ratio of the distance of each molar to 
the midline of the palate. But, when the inner bow 
was asymmetrical, delta (mm) decreased on the side 
with the bow closer to the molar and increased by a 
similar amount on the contralateral molar (Models 3 
and 4). It appeared that the forces on the molars were 
more affected by an asymmetry in the inner bow than 
a palatal displacement of a molar. The shifts depicted 
in Models 3 and 4 were only 2 mm, whereas in  
Model 2, it required a 4 mm palatal displacement of 
one molar to produce the same effect. The findings in 
the present study suggest that the light, but unequal, 
forces generated by an asymmetric inner bow may be 
an effective method of distalising a maxillary molar.21

Conclusions

1. A FEM analysis of the force systems revealed that 
small asymmetries in molar position, the size of a 
bayonet bend and the point of application of a force 

Figure 5. The PDL von Mises stress findings in different 3-D models. 
Model 1, control, both molars 23 mm from the midpalatal line, inner 
bow symmetrical; Model 2, left molar displaced 4 mm towards the 
midpalatal line, inner bow symmetrical; Model 3, both molars 23 mm 
from the midpalatal line, left molar engaged by 2 mm larger bayonet 
bend; Model 4, both molars 23 mm from the midpalatal line, inner - 
outer bow join displaced 2 mm towards the left molar.

Figure 4. The molar energy findings in different 3-D models. Model 
1, control, both molars 23 mm from the midpalatal line, inner bow 
symmetrical; Model 2, left molar displaced 4 mm towards the 
midpalatal line, inner bow symmetrical; Model 3, both molars 23 mm 
from the midpalatal line, left molar engaged by 2 mm larger bayonet 
bend; Model 4, both molars 23 mm from the midpalatal line, inner - 
outer bow join displaced 2 mm towards the left molar.
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on an inner bow resulted in asymmetrical forces on 
the molars. These forces were higher on the molar 
closer to the symmetric plane of the headgear. 

2. These findings are of clinical significance because 
differences in headgear force systems have the potential 
to move molars asymmetrically.
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